Multiple Input Multiple Output Detection Using Roulette Wheel Based Ant Colony Optimization Technique

نویسندگان

  • B. Rebekka
  • B. Malarkodi
چکیده

This paper describes an approach to detect the transmitted signals for 2×2 Multiple Input Multiple Output (MIMO) setup using roulette wheel based ant colony optimization technique. The results obtained are compared with classical zero forcing and least mean square techniques. The detection rates achieved using this technique are consistently larger than the one achieved using classical methods for 50 number of attempts with two different antennas transmitting the input stream from a user. This paves the path to use alternative techniques to improve the throughput achieved in advanced networks like Long Term Evolution (LTE) networks. Keywords—MIMO, ant colony optimization, roulette wheel, soft computing, LTE.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Heuristic (1-Opt Local Search) and Metaheuristic (Ant Colony Optimization) Algorithms for Symbol Detection in MIMO Systems

Heuristic and metaheuristic techniques are used for solving computationally hard optimization problems. Local search is a heuristic technique while Ant colony optimization (ACO), inspired by the ants’ foraging behavior, is one of the most recent metaheuristic technique. These techniques are used for solving optimization problems. Multiple-Input Multiple-Output (MIMO) detection problem is an NP-...

متن کامل

Congestion control based ant colony optimization algorithm for large MIMO detection

Employing multiple antennas in wireless communication systems is a key technology for future generation of wireless systems. Symbol detection in multiple-input multiple-output (MIMO) systems with low complexity is challenging. The minimum bit error rate (BER) performance can be achieved by maximum likelihood (ML) detection. However, with increase in number of antennas in MIMO systems, the ML de...

متن کامل

Estimation of Total Organic Carbon from well logs and seismic sections via neural network and ant colony optimization approach: a case study from the Mansuri oil field, SW Iran

In this paper, 2D seismic data and petrophysical logs of the Pabdeh Formation from four wells of the Mansuri oil field are utilized. ΔLog R method was used to generate a continuous TOC log from petrophysical data. The calculated TOC values by ΔLog R method, used for a multi-attribute seismic analysis. In this study, seismic inversion was performed based on neural networks algorithm and the resu...

متن کامل

Study of Parametric Relation in Ant Colony Optimization Approach to Traveling Salesman Problem

Presetting control parameters of algorithms are important to ant colony optimization (ACO). This paper presents an investigation into the relationship of algorithms performance and the different control parameter settings. Two tour building methods are used in this paper including the max probability selection and the roulette wheel selection. Four parameters are used, which are two control par...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016